Structural Change and Hydrophobic Interaction as Related to Unusual Stability Constants of Copper(II) Complexes with 2,2'-Bipyridyl and Substituted 1,10-Phenanthrolines

Motoharu Tanaka

Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602

Received January 24, 2005; E-mail: motanaka@yo.rim.or.jp

Unusual values of K_1 and K_2 for the formation of complexes CuL_2 with L=2,2'-bipyridyl (bpy) and substituted 1,10-phenanthrolines (phen) have been discussed in relation to the structural change from CuL to CuL_2 and the hydrophobic interaction between the coordinated ligands. The free energy for the structural change from the distorted octahedral CuL_2 to the trigonal bipyramidal CuL_2 has been estimated to be $0.80~(-4.5~\text{kJ}\,\text{mol}^{-1})$ for L=bpy and $0.47~(-2.7~\text{kJ}\,\text{mol}^{-1})$ for L=phen.

2,2'-Bipyridyl, 1,10-phenanthroline, and their derivatives have been the subject of extensive research not only in analytical^{1,2} and coordination chemistry³⁻¹⁷ but also in bioinorganic chemistry.^{18,19} A critical review of stability constants of metal complexes with these ligands has been compiled by McBryde.²⁰

In Table 1 are listed stability constants of copper(II) complexes with 2,2'-bipyridyl (bpy) and substituted 1,10-phenanthrolines (phen). As is evident from the Table, steric hindrance occurs in complexes with 2- and 2,9-substituted phen, for which $\log K_1$ values are lower than for unsubstituted phen.

For 2,9-dimethyl-phen a $\log K_2$ value higher than the $\log K_1$ value has been reported.⁸

Irving and Mellor⁹ have noticed for the copper complexes with unsubstituted phen and bpy an abnormally high value of K_1/K_2 as compared to the ethylenediamine complexes. This was thought to be a piece of evidence for the steric effects of 2-and 9-hydrogen atoms of phen and 3,3'-hydrogen atoms of bpy. This steric effect makes it difficult for the 1:2 copper complexes to form the usual distorted octahedral structure.

The structure of the 1:2 bipyridyl complex in aqueous solution is known to be different from that of the 1:1 complex:³ the 1:1 complex has the usual axially elongated octahedral structure with 4 additional water molecules, while the 1:2 complex has the five coordinated trigonal bipyramidal structure with an additional water molecule. Similar changes of crystal structure have been observed for the phen complexes.^{4,5}

Now according to the mechanistic consideration of the stability constant,²¹ $\log K_2$ can be estimated from corresponding $\log K_1$. The postulated structure of the copper(II) complex is the distorted octahedron for the 1:1 as well as the 1:2 complex. For the copper(II) complexes with heterocyclic diamines like bpy and phen, we have:

$$\log K_2 \text{ (calcd)} = \log K_1 \text{ (obsd)} - 1.86.$$
 (1)

The $\log K_2$ (calcd) value may be regarded as a $\log K_2$ value to be observed for the 1:2 complex with a presumed structure of a distorted octahedron. Then $\log K_2$ (calcd) $-\log K_2$ (obsd) (denoted as "Dif" in Table 1) is the logarithmic constant of formation of the fictitious distorted octahedral CuL₂ from the trigonal bipyramidal CuL₂. The average values of "Dif" are: 0.80 (-4.5 kJ mol⁻¹) for L = bpy and 0.47 (-2.7 kJ mol⁻¹) for L = phen.

The "Dif" value may be utilized to normalize the structural change from CuL to CuL₂. The normalized $\log K_2$ values for substituted phen are given by $\log K_2$ (calcd) - 0.47 and they are listed in the column "norm. $\log K_2$ " of Table 1. These values are utilized for consideration of the effect of substituents in the absence of any steric hindrance.

For 5-nitro-phen, two independent $\log K_2$ (obsd) values are available.²² If the lower value is accepted, the situation is sim-

Table 1. Stability Constants of Copper(II) Complexes with 2,2'-Bipyridyl (bpy) and Substituted 1,10-Phenanthrolines (phen)

Ligand	$\log K_1$ (obsd)	$\log K_2$ (obsd)	$\log K_2$ (calcd)	norm. $\log K_2$	Dif.	Ref.
bpy	8.10	5.34	6.24	5.44	+0.90	6
	8.11	5.55	6.25	5.45	+0.70	15
	8.15	5.50	6.29	5.49	+0.79	9
phen	9.00	6.70	7.14	6.67	+0.44	6
	9.25	6.75	7.39	6.92	+0.64	7
	9.16	6.96	7.30	6.83	+0.34	8
2-Chloro-phen	5.07	5.00	3.22	2.75	-1.78	14
	5.60	4.85	3.74	3.27	-1.11	15
5-Nitro-phen	8.00	5.47	6.14	5.67	+0.67	13
	8.00	6.48	6.14	5.67	-0.34	16
2-Methyl-phen	7.40	6.45	6.54	6.07	+0.09	10
5-Methyl-phen	8.55	6.47	6.69	6.22	+0.22	11
2,9-Dimethyl-phen	5.20	5.8	3.34	2.87	-2.46	10
4,7-Dimethyl-phen	8.76	7.26	6.90	6.48	-0.36	12
5,6-Dimethyl-phen	8.71	6.99	6.85	6.38	-0.14	12

Table 2. Comparison of $(\log K_2 \text{ (obsd)} - \text{norm. } \log K_2)$ with Hydrophobicity $\log \{K_D \text{ (PhX)}/K_D \text{ (PhH)}\}$

Substituent of phen	5-NO ₂	Н	5-CH ₃	4,7-(CH ₃) ₂	5,6-(CH ₃) ₂
$\log K_2$ (obsd) – norm. $\log K_2$	0.81, -0.20	0	0.25	0.83	0.61
$log\{K_D (PhX)/K_D (PhH)\}$	-0.28	0	0.60	1.20	1.20

ple: for 5-methyl-, 4,7-dimethyl-, and 5,6-dimethyl-phen, $\log K_2$ (obsd) is higher than norm. $\log K_2$ values, whereas reversely for 5-nitro-phen $\log K_2$ (obsd) is lower than norm. $\log K_2$. As a measure of hydrophobicity of a substituent X, we propose to utilize the logarithmic ratio of the partition constant K_D (between the organic and aqueous phases) of X-phenyl (PhX) against H-phenyl (PhH).

$$\log\{K_{\rm D} (\rm PhX)/K_{\rm D} (\rm PhH)\}. \tag{2}$$

This value is compared with the value of $(\log K_2 \text{ (obsd)} - \text{norm. } \log K_2)$ in Table 2.

Evidently ($\log K_2$ (obsd) – norm. $\log K_2$) values are parallel to the hydrophobicity of the substituent X.

On the other hand, if we accept the higher value of $\log K_2$ (obsd) for 5-nitro-phen complex, $^{16} \log K_2$ (obsd) is higher than norm. $\log K_2$. The nitro group is known as a hydrophile. Thus the 5-nitro-phen complex should be excluded as an exception from the $\log \{K_{\rm D} \, ({\rm Ph}X)/K_{\rm D} \, ({\rm Ph}H)\}$ correlation. 24

For 2- and 2,9-substituted phen, values of $\log K_2$ (obsd) are definitely higher than norm. $\log K_2$. For the 2,9-dimethyl-phen complex, $\log K_2$ (obsd) is higher than $\log K_1$ (obsd): steric hindrance appears to be less pronounced for the 1:2 complex (distorted trigonal bipyramid) than for the 1:1 complex (distorted octahedron).

The author wishes to thank Professor Osamu Yamauchi, Kansai University, for helpful discussions.

References

- 1 Y. Yamamoto, *Bunseki Kagaku*, **21**, 418 (1972), references cited therein.
- 2 Y. Yamamoto, T. Tarumoto, and E. Iwamoto, *Anal. Chim. Acta*, **64**, 1 (1973).
- 3 K. Ozutsumi and T. Kawashima, *Inorg. Chim. Acta*, 180, 231 (1991).
- 4 H. Nakai and Y. Deguchi, *Bull. Chem. Soc. Jpn.*, **48**, 2557 (1975).
- 5 H. Nakai and Y. Noda, *Bull. Chem. Soc. Jpn.*, **51**, 1386 (1978).

- 6 G. Ostacoli, P. Daniele, and A. Vanni, *Ann. Chim. (Rome)*, **66**, 305 (1976).
 - 7 G. Anderegg, Helv. Chim. Acta, 40, 2397 (1963).
 - 8 J. Scharf and M. Paris, Bull. Soc. Chim. Fr., 1967, 1782.
 - 9 H. M. Irving and D. H. Mellor, J. Chem. Soc., 1962, 5222.
 - 10 H. M. Irving and D. H. Mellor, J. Chem. Soc., **1962**, 5237.
- 11 W. A. E. McBryde, D. A. Brisbin, and H. M. Irving, *J. Chem. Soc.*, **1962**, 5245.
- 12 D. A. Brisbin and W. A. E. McBryde, *Can. J. Chem.*, **41**, 1137 (1963).
- 13 C. V. Banks and R. Bystroff, *J. Am. Chem. Soc.*, **81**, 6153 (1959).
- 14 H. M. Irving and P. J. Gee, *Anal. Chim. Acta*, **55**, 315 (1971).
- 15 B. R. James and R. J. P. Williams, *J. Chem. Soc.*, **1961**, 2007.
- 16 A. Odani and O. Yamauchi, *Nippon Kagaku Kaishi*, **1987**, 336.
- 17 G. Arena, R. Cali, E. Rizzarelli, and S. Samartano, *Thermochim. Acta*, 17, 155 (1976).
- 18 M. S. Luth, L. E. Kapinos, B. Song, B. Lippert, and H. Sigel, *J. Chem Soc.*, *Dalton Trans.*, **1999**, 357, references cited therein.
- 19 T. Sugimori, H. Masuda, N. Ohta, K. Koiwai, A. Odani, and O. Yamauchi, *Inorg. Chem.*, **36**, 576 (1997), references cited therein.
- 20 W. A. E. McBryde, "A Critical Review of Equilibrium Data for Proton and Metal Complexes of 1,10-Phenanthroline, 2,2'-Bipyridyl, and Related Compounds (IUPAC Chemical Data Series No. 17)," Pergamon Press, Oxford (1978), pp. 1–78.
 - 21 M. Tanaka, J. Inorg. Nucl. Chem., 36, 151 (1974).
- 22 The author acknowledges the advice by a reviewer to direct the author's attention to Refs. 15 and 16.
- 23 A. Leo, C. Hansch, and D. Elkins, *Chem. Rev.*, **71**, 525 (1971).
- 24 In this respect, it is noticed that for copper ternary complexes CuLA with L = phen or bpy and A = para-X-substituted DL-phenylalanine (X = F, Cl, and Br) and para-X-substituted L-phenylalanine (X = H, I, and NO₂), 19 {log K(CuL + A) (obsd) log K(CuL + A) (calcd) 21 } is almost linearly related to log{K_D (PhX)/K_D (PhH)} (M. Tanaka, unpublished result).